
Citation: Ben Haj Amor, A.; El Ghoul,

O.; Jemni, M. Sign Language

Recognition Using the

Electromyographic Signal: A

Systematic Literature Review. Sensors

2023, 23, 8343. https://doi.org/

10.3390/s23198343

Academic Editor: Andrea

Facchinetti

Received: 30 June 2023

Revised: 23 September 2023

Accepted: 3 October 2023

Published: 9 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Sign Language Recognition Using the Electromyographic
Signal: A Systematic Literature Review
Amina Ben Haj Amor 1, Oussama El Ghoul 2 and Mohamed Jemni 3,*

1 Research Laboratory LaTICE, University of Tunis, Tunis 1008, Tunisia; benhajamor.amina@gmail.com
2 Mada—Assistive Technology Center Qatar, Doha P.O. Box 24230, Qatar; oelghoul@mada.org.qa
3 Arab League Educational, Cultural, and Scientific Organization, Tunis 1003, Tunisia
* Correspondence: mohamed.jemni@alecso.org.tn

Abstract: The analysis and recognition of sign languages are currently active fields of research
focused on sign recognition. Various approaches differ in terms of analysis methods and the devices
used for sign acquisition. Traditional methods rely on video analysis or spatial positioning data
calculated using motion capture tools. In contrast to these conventional recognition and classification
approaches, electromyogram (EMG) signals, which measure muscle electrical activity, offer potential
technology for detecting gestures. These EMG-based approaches have recently gained attention
due to their advantages. This prompted us to conduct a comprehensive study on the methods,
approaches, and projects utilizing EMG sensors for sign language handshape recognition. In this
paper, we provided an overview of the sign language recognition field through a literature review,
with the objective of offering an in-depth review of the most significant techniques. These techniques
were categorized in this article based on their respective methodologies. The survey discussed the
progress and challenges in sign language recognition systems based on surface electromyography
(sEMG) signals. These systems have shown promise but face issues like sEMG data variability and
sensor placement. Multiple sensors enhance reliability and accuracy. Machine learning, including
deep learning, is used to address these challenges. Common classifiers in sEMG-based sign language
recognition include SVM, ANN, CNN, KNN, HMM, and LSTM. While SVM and ANN are widely
used, random forest and KNN have shown better performance in some cases. A multilayer perceptron
neural network achieved perfect accuracy in one study. CNN, often paired with LSTM, ranks as
the third most popular classifier and can achieve exceptional accuracy, reaching up to 99.6% when
utilizing both EMG and IMU data. LSTM is highly regarded for handling sequential dependencies in
EMG signals, making it a critical component of sign language recognition systems. In summary, the
survey highlights the prevalence of SVM and ANN classifiers but also suggests the effectiveness of
alternative classifiers like random forests and KNNs. LSTM emerges as the most suitable algorithm for
capturing sequential dependencies and improving gesture recognition in EMG-based sign language
recognition systems.

Keywords: sign language recognition; systematic review; sEMG; electromyographic signal

1. Introduction

The use of body movements as a nonverbal means of interaction is a powerful com-
munication tool. While hearing individuals use gestures to complement their speech,
deaf people rely on them as the foundation of their language. Therefore, sign language
constitutes their primary mode of communication. It is important to note that deafness
is a unique disability that remains hidden, and due to hearing loss, it excludes deaf and
hard-of-hearing individuals from accessing auditory information available to the hearing
population. Consequently, deaf individuals face a significant information deficit.

To address this disparity, various initiatives have been implemented to make public
information accessible to deaf individuals. The prospect of creating real-time translation
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systems between spoken languages and sign languages is intriguing, especially consid-
ering that sign language is used by a minority of hearing individuals. Recognizing the
gestures used by deaf individuals in their communication process is a crucial step to-
wards achieving this goal and promoting accessibility and social integration within this
community. However, research in the field of automatic sign language recognition is
limited. Most research relies on motion capture and gloves, images, videos, and, more
recently, sEMG data. Despite this, sign language recognition methods are continually
evolving, with ongoing refinements in computer vision methods and exploration of various
sensor-based approaches.

With technological advancements, several complex devices and sensors have been
developed for use in sign language recognition. Initially, participants wore colored gloves
to simplify the recognition task. However, more recent systems, based on vision and
electromyogram (EMG) sensors, offer potential technology for gesture recognition. These
systems have resulted from extensive research and effective marketing efforts, including
the active and passive gloves, leap motion, and sEMG sensors. sEMG-based systems
were initially employed in various applications and experiments during the 1980s, with
several researchers utilizing them for data acquisition. The acquisition of the EMG signal
is a crucial step in ensuring the effectiveness of the sign language recognition system [1],
distinguishing it from classical sign language recognition approaches [2]. sEMG data can
be obtained from several existing wearable devices in the market, including a set of EMG
sensors that can be designed as wristbands worn by signers. Several significant parameters
influence the analysis of EMG signals, including the quality of the contact between the
electrode and the skin, skin properties, muscle energy state, and the distance between the
sEMG sensors [3,4]. Additionally, the type and size of the sEMG sensors directly affect
the bandwidth and amplitude of the signal. It is worth noting that EMG signals typically
possess a bandwidth ranging from 10 Hz to 10,000 Hz and an amplitude ranging from
10 µV to 5 mV.

This systematic review aimed to assess the current state of research on using EMG
signals for sign language recognition. This review systematically searched and evaluated
the relevant literature, examined data acquisition methods and their impact, analyzed
feature extraction and classification techniques, assessed dataset relevance, and evaluated
participant diversity in studies. It analyzed feature extraction and classification techniques
applied to EMG signals and identified the most used datasets, evaluating their relevance
and suitability. This review also assessed the current state of research considering sample
size and participant diversity in studies, providing a summary and making recommen-
dations for future research. Additionally, it addressed the challenges and limitations,
including issues related to feature extraction and classification, of using EMG signals for
sign language recognition. This review summarized and discussed 88 selected studies on
sign language recognition using EMG signals. Chinese sign language is the most frequently
studied, with 25% of the reviewed studies focusing on it. American sign language is the
second most studied. This review sheds light on the use of EMG signals in sign language
recognition research and the prevalence of studies on specific signed languages.

The paper is organized as follows: In Section 2, we provide a comprehensive ex-
ploration of various essential aspects of our research. This section begins by presenting
the background and objectives that underpin our study. We delved into the context and
motivations that drove our investigation. Moving forward, the subsequent section is
dedicated to describing the techniques and devices employed in the acquisition of data.
Here, we meticulously examined the devices and methodologies used to capture the EMG
signals. This section serves as a basis for understanding the data gathering process and
its implications on the subsequent stages of our analysis. Following our exploration of
data acquisition, we pivot to a section focused on the techniques used in the extraction of
features and the processing of data. In this part of our study, we presented the methods
used to derive meaningful information from the collected EMG signals. In Section 5, we
transition to another section that spotlights the classification approaches most frequently
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employed in the domain of EMG-based sign language recognition. Here, we delved into
the algorithms and methodologies used to categorize and identify sign language gestures
from the processed data. This section offers valuable insights into the classification tech-
niques that have been pivotal in advancing the field. In the Section 6, we enter a detailed
discussion aimed at comparing different approaches and devices used for data acquisition.
Within this section, our primary goal was to extract meaningful findings by dissecting
the algorithms, methodologies, and tools employed in categorizing and identifying sign
language gestures from the processed data. Additionally, we engaged in a comparative
analysis to evaluate accuracy and performance.

2. Background and Objectives

In this section, we provide an overview of the background and the fundamental
objectives that underpin the entire review related to EMG signal acquisition and processing
for sign language recognition. We thoroughly explore the contextual landscape of EMG
signal acquisition and processing, elucidating the key factors and motivations driving
our survey.

2.1. Background

Video, motion capture (mocap), and surface electromyography (sEMG) are distinctive
technologies employed for sign language recognition, each offering unique advantages
and facing different challenges (Table 1). Video-based recognition is versatile, dealing with
2D/3D visual data, offering high resolutions and moderate portability at a moderate cost. It
is, however, sensitive to light conditions. Mocap provides high-resolution 3D motion analy-
sis but is less portable and more expensive, with sensitivity to marker occlusions. sEMG,
capturing muscle activation, stands out for its portability and ability to record static and
dynamic gestures, making it valuable for muscle analysis in sign language. Each technology,
with its unique attributes, serves varied applications in sign language recognition.

Table 1. Comparative overview of technologies for sign language recognition.

Parameter Video Motion Capture Surface Electromyography

Sensing technology Cameras Infrared cameras/sensors Electrodes
Data type Visual/2D/3D 3D positions/orientations Muscle activation signals
Sensitivity Light conditions Marker occlusions Muscle contractions and noise

Gesture types Static/dynamic Static Static/dynamic
Spatial resolution High (depends on camera) High Moderate/high

Temporal resolution High (depends on fps) High High
Accuracy Variable (depends on algo) High (depends on setup) Variable (depends on algo and setup)

Application General sign language Detailed motion analysis Muscle analysis for sign language
Portability Moderate/high Low High

Cost Low/moderate High Moderate

Electromyogram (EMG) signals are biological signals corresponding to the electric
current captured on the skin surface near the muscle during its contraction [5]. They are
controlled by the nervous system. In fact, electromyography (EMG) [6] processes neuro-
muscular activity and muscle morphology by measuring muscle responses or electrical
activity produced by skeletal muscles. EMG signals concern two types of electrical activity
of the motor units of a muscle:

• The first type is the surface EMG (sEMG), which is recorded via non-invasive elec-
trodes, often used to obtain data on the intensity of the superficial muscle activation
or on the time [7].

• The second is the intramuscular EMG that is recorded via invasive electrodes [8].

The electrical current generated in a muscle during the contraction or detraction
represents neuromuscular activities, measured via EMG signals [9], as shown in Figure 1.
This can be used for various applications. Electromyography (EMG) studies neuromuscular
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activity and muscle morphology by measuring muscle responses or electrical activity
produced by skeletal muscles. The nerves control muscles through electrical signals called
impulses. These impulses are measured and recorded using EMG sensors via surface
electrodes, where the electrodes are placed directly on the muscle to detect muscle impulses.
Indeed, to generate muscle movements, electrical signals are transmitted from the brain to
one or more neurons. Each neuron is attached to hundreds or even thousands of muscle
fibers, causing them to contract while the neuron(s) remain active [10]. The summation
of the electrical activity is produced by the neurons and contraction of all affected muscle
fibers. The latter is called the motor unit potential (MUP), which contributes to the signal
generation and gives a stochastic nature to EMG [11].
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Our work has discussed papers that primarily focus on the movement of the hand,
specifically controlled by the extrinsic muscles, which originate in the forearm and ex-
tend into the hand, and the intrinsic muscles, which are located entirely within the hand.
Figures 2 and 7 depict these muscles.
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Figure 2. Arm muscles.

Electromyogram (EMG) signals offer significant potential for technical applications,
as they provide detailed information on muscle activity across different scales. EMG
signals are widely used to study human body behavior, and their recording from muscles
presents an opportunity to identify various characteristics. However, the complex patterns
of EMG signals and the noise they generate, particularly during movement, make their
classification challenging. Nevertheless, advancements in signal processing and machine
learning techniques are making the use of sEMG signals in domains, such as the human–
computer interaction, a promising research area.
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Research on the domain of the human–computer interaction (HMI) represents a rela-
tively new area of interest. In this domain, electromyographic (EMG) signals have been
utilized for a variety of clinical and industrial applications, such as controlling exoskele-
tons, robotic prostheses, wheelchair robotics, and hand gesture recognition applications.
These applications rely on the classification of EMG signals via electromyographic control
techniques. However, the accurate acquisition of the EMG signal is a crucial step to ensure
the efficacy of these applications. Over the past few decades, numerous researchers have
shown a keen interest in utilizing surface electromyography (sEMG) signals for hand ges-
ture recognition, and for this purpose, several features can be extracted from these signals.
However, the sEMG signals are characterized by high variability and complexity, thus
necessitating the extraction of a vast amount of information for feature extraction. In order
to recognize and analyze hand gestures, a series of quantitative measurements must be
analyzed, broken down, and classified.

This review was concerned with the classification of electromyographic (EMG) signals
for the purpose of sign language recognition [12]. The recognition of sign language is of
great significance, as it allows people with hearing or speech impairments to effectively
communicate with others. EMG signals have shown promising results for the recognition
of sign language due to their ability to capture the electrical activity of muscles that control
hand movements and gestures.

2.2. Objectives

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Review and Meta-Analysis protocol [13]. To begin, we formulated the
research questions, which have been described on the subsequent page, followed by the
development of a search strategy.

Figure 3 illustrates the process we employed to select relevant papers. Initially, we
conducted searches through seven web platforms, as specified in the identification step of
Figure 3. We sought papers containing the term “sign language,”, along with “recognition”
or “classification,”, and at least one of the following terms: “emg,”, “semg,”, “electromyog-
raphy,”, or “electromyographic” within the title, abstract, or keywords. Employing these
criteria yielded a set of 418 papers. After removing duplicates, we secured a total of
123 unique articles for further screening. Each article underwent a rigorous evaluation
to assess its relevance and quality within the context of our research. The screening step
involved reviewing abstracts, titles, and keywords to select papers that utilized sEMG
signals for sign language recognition, leaving us with 91 significant papers out of the
123 initially selected during the screening step. After the screening step, selection through
eligibility criteria was applied. We selected papers that focus on the recognition of static or
dynamic signs in sign languages. Papers that used mixed approaches, like the combination
of sEMG and inertial data, were also considered eligible. The quality of the included studies
was subsequently assessed using specific criteria. We only retained papers that provided
information about the utilized dataset, such as its size, the number of subjects, and the
data collection methodology. Additionally, we only included papers that clearly presented
the employed approach and reported the accuracy obtained with that approach. Finally,
88 papers were included in the review.

The results of the systematic review were then synthesized and interpreted, con-
sidering the strengths and limitations of the included studies. The systematic review
process ensures a rigorous and transparent approach to synthesizing the available evidence,
providing a comprehensive and reliable overview of the existing literature.
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The goal of this systematic review was to take a closer look at the current state of
research on using EMG signals to recognize sign language. This review carefully examined
the relevant studies and research in this field. We also looked at the methods and tools
used to capture EMG signals and how they impacted the recognition results.

This review has:

1. Systematically searched, identified, and critically evaluated the relevant literature on
sign language recognition using EMG signals.

2. Investigated the various data acquisition methods and devices used to capture EMG
signals and their impact on the recognition performance.

3. Analyzed the different feature extraction and classification techniques applied to EMG
signals for sign language recognition.

4. Identified the most used datasets and evaluated their relevance and suitability for
sign language recognition using EMG signals.

5. Assessed the current state of research in terms of the sample size and the diversity of
the participants in the studies.

6. Provided a summary of the current state of research on sign language recognition
using EMG signals and made recommendations for future research.

7. Identified the challenges and limitations of using EMG signals for sign language recog-
nition, including problems related to signal quality, feature extraction, and classification.

This review has presented a comprehensive summary and critical discussion of
88 selected studies that focused on sign language recognition using electromyographic
(EMG) signals. The reviewed articles covered research on 21 distinct sign languages, and
our systematic analysis revealed that Chinese sign language was the most frequently used
language for EMG-based classification works. Specifically, 21 out of the 88 studies (24%) in
our review focused on Chinese sign language, with an equal number of papers dedicated
to American Sign Language. Our review highlights the utilization of EMG signals in
sign language recognition research and provides insights into the prevalence of research
on specific signed languages. Table 2 provides an overview of the commonly used sign
languages and their corresponding percentages of use, as well as references to the studies
that employed EMG signals for sign language recognition.
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Table 2. Papers on sign languages.

Sign Language Percent References

Chinese sign language 23.86% [14–34]
American sign language 23.86% [35–55]

Indian sign language 11.4% [56–65]
Brazilian sign language 4.5% [66–69]
General sign language 4.5% [70–73]

Indonesian sign language 4.5% [74–77]
Arabic sign language 3.4% [78–80]
Italian sign language 3.4% [81–83]
Korean sign language 3.4% [84–86]

Pakistani sign language 2.3% [87,88]
Turkish sign language 2.3% [89,90]

Malaysian sign language 1.1% [91]
Peru sign language 1.1% [92]

Polish sign language 1.1% [93]
German sign language 1.1% [94]
French sign language 1.1% [95]

Parisian sign language 1.1% [96]
Colombian sign language 1.1% [97]

Thai sign language 1.1% [98]
Sinhala sign language 1.1% [99]

Irish sign language 1.1% [100]
Greek sign language 1.1% [101]

3. Data Acquisition and Devices

In this section, we will discuss various aspects of the data acquisition process for sign
language recognition systems. Specifically, we will focus on the devices and sensors used
to collect gesture and motion data, the number of subjects involved in data collection, and
the environmental conditions under which the data were acquired. These factors play a
crucial role in determining the quality and quantity of data available for training and testing
recognition algorithms. The selection of devices and sensors used in data acquisition is an
important consideration when developing sign language recognition systems. The choice
of sensors may depend on certain factors, such as the desired level of detail, the cost, and
complexity of the sensor setup. Moreover, the number of subjects involved in data collection
is also an important factor to consider. Larger datasets can improve the generalizability
of recognition algorithms and provide a more representative sample of the population.
However, collecting data from a large number of subjects can be time-consuming and may
require additional resources. Lastly, environmental conditions, such background noise, and
movement restrictions can affect the quality of data collected. Therefore, efforts have been
made to control these factors during data acquisition to ensure that the collected data is of
high quality and suitable for use in training and testing recognition algorithms.

Before we look at how these data are collected and what devices are used in the
selected studies, we will begin by showing the types of gestures that have been studied.
We will give a detailed overview of the specific gestures mentioned in these studies.

Figure 4 displays the types of gestures recognized in sign language. We have identified
three distinct categories of these gestures. The first category, static gestures, covers hand
shapes, alphabet letters, and digits. The second, dynamic gestures, includes words and
subwords. Lastly, there is a category dedicated to sentences. Notably, the sentence category
is the least represented among the three. We found that this category was only used on
three languages: Chinese, American, and Pakistani. Furthermore, for more than half of the
sign languages, we only noted one paper addressing sign language recognition using EMG
data. For the American, Chinese, and Indian sign languages (the three most frequently
encountered languages), we observed that dynamic gestures are more commonly identified.
However, for the other languages, static gestures tended to be more common.
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Figure 4. Categories of recognized gestures by sign language.

Figure 5 presents an overview of the studies undertaken between 2010 and 2022 that
employed surface electromyography (sEMG) data to recognize sign language gestures;
more detailed information is available in Table A1 of the Appendix A. These studies have
utilized sEMG sensors to capture the electric signal data corresponding to gestures. Posi-
tioned on the forearm’s skin surface, sEMG sensors record the electrical activity manifested
by the muscles in motion, serving as a direct indicator of muscular activity. Generally
affixed to the user’s hand, wrist, or forearm, these sensors acquire data amidst the execution
of sign language gestures. The integration of sEMG with IMU data or alternative data
types, such as leap motion, has been proven to elevate recognition accuracy and fortify
the identification of complex gestures. A review of the findings collated in Table A1 offers
valuable insights into the efficacy of various data gathering and analysis methods in the
field of sign language recognition.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 41 
 

 

fortify the identification of complex gestures. A review of the findings collated in Table A1 
offers valuable insights into the efficacy of various data gathering and analysis methods 
in the field of sign language recognition. 

 
Figure 5. Data acquisition devices. 

This review revealed that the Myo armband is the most commonly used device in 
EMG-based sign language recognition systems (Figure 5). This is due to its affordability 
compared to other devices. Custom devices were found to be the second most commonly 
used after Myo, representing a significant proportion of the devices used in the studies 
we reviewed. Together, Myo and custom devices accounted for about 80% of the devices 
used in the reviewed studies. Non-Myo armband devices were found to operate at a fre-
quency of 1 kHz, which is higher than the 200 Hz used in Myo armband devices. Addi-
tionally, we found that eight-channel devices were the most commonly used. These find-
ings suggest that the Myo armband is popular due to its cost-effectiveness, while custom 
devices offer more flexibility and customization options. The dominance of the Myo arm-
band and custom devices in the reviewed studies highlights the importance of considering 
device specifications when developing EMG-based sign language recognition systems. 
Specifically, the frequency and number of channels must be carefully selected to ensure 
optimal system performance [3]. 

In addition to the previously mentioned findings, we also noted that the majority of 
the reviewed studies only used one hand, either the right or dominant hand, for EMG-
based sign language recognition. Out of the 88 reviewed studies, only 20 studies used data 
from both hands. This finding highlights the need for further research in using both hands 
simultaneously in EMG-based sign language recognition systems. It is possible that using 
data from both hands could increase the accuracy and efficiency of such systems, espe-
cially in recognizing complex signs and sentences that require coordinated movements of 
both hands. Therefore, future studies may consider exploring the use of both hands in 
EMG-based sign language recognition systems. 

The accuracy of recognition varies in different studies due to certain factors, such as 
the complexity of gestures, type of data used, performance metrics, and devices used for 
data acquisition. Notably, approximately 50% of the studies employed the Myo armband 
from Thalmic Labs, which includes eight sEMG sensors for data acquisition. Figure 5 pro-
vides a visual representation of the frequency with which different EMG devices were 
utilized in the studies discussed in this article. This information can be useful in under-
standing the popularity and effectiveness of different devices for acquiring sEMG data. 

Figure 5. Data acquisition devices.

This review revealed that the Myo armband is the most commonly used device in
EMG-based sign language recognition systems (Figure 5). This is due to its affordability
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compared to other devices. Custom devices were found to be the second most commonly
used after Myo, representing a significant proportion of the devices used in the studies
we reviewed. Together, Myo and custom devices accounted for about 80% of the devices
used in the reviewed studies. Non-Myo armband devices were found to operate at a
frequency of 1 kHz, which is higher than the 200 Hz used in Myo armband devices.
Additionally, we found that eight-channel devices were the most commonly used. These
findings suggest that the Myo armband is popular due to its cost-effectiveness, while
custom devices offer more flexibility and customization options. The dominance of the
Myo armband and custom devices in the reviewed studies highlights the importance of
considering device specifications when developing EMG-based sign language recognition
systems. Specifically, the frequency and number of channels must be carefully selected to
ensure optimal system performance [3].

In addition to the previously mentioned findings, we also noted that the majority of
the reviewed studies only used one hand, either the right or dominant hand, for EMG-
based sign language recognition. Out of the 88 reviewed studies, only 20 studies used
data from both hands. This finding highlights the need for further research in using both
hands simultaneously in EMG-based sign language recognition systems. It is possible that
using data from both hands could increase the accuracy and efficiency of such systems,
especially in recognizing complex signs and sentences that require coordinated movements
of both hands. Therefore, future studies may consider exploring the use of both hands in
EMG-based sign language recognition systems.

The accuracy of recognition varies in different studies due to certain factors, such as the
complexity of gestures, type of data used, performance metrics, and devices used for data
acquisition. Notably, approximately 50% of the studies employed the Myo armband from
Thalmic Labs, which includes eight sEMG sensors for data acquisition. Figure 5 provides a
visual representation of the frequency with which different EMG devices were utilized in
the studies discussed in this article. This information can be useful in understanding the
popularity and effectiveness of different devices for acquiring sEMG data.

Findings from the results obtained in the different studies examined in this article
indicate that the use of the Myo armband can yield accurate results.. In the study published
by the authors of [41], the researchers utilized two Myo armbands and assessed the perfor-
mance of their approach by experimenting with different combinations of characteristics.
Remarkably, they achieved 100% accuracy using surface electromyography (sEMG) in con-
junction with accelerometer, gyroscope, and magnetometer sensors. Moreover, an accuracy
rate of 99.25% was obtained using sEMG with accelerometer and magnetometer sensors.
They also achieved an accuracy of 95.55% using the combination of sEMG, accelerometer,
and gyroscope data, while the minimum accuracy of 47.4% was obtained when only sEMG
data were used. This study emphasized the importance of combining different sensors to
achieve high accuracy in measuring movement and orientation. The authors of [85] also
obtained a high accuracy rate, equivalent to 99.6%, for the recognition of 30 gestures in
Korean sign language, also using EMG and IMU data obtained from the Myo armband.
According to our review of the literature, the best results were obtained via the approach
that used the maximum number of sEMG sensors. In fact, the more the number of sEMG
sensors is increased, the more the precision of the result is improved. In this context, so far,
the device that contains the maximum number of sEMG sensors is the Myo armband.

From Figure 6, it is clear that the studies can be categorized into three distinct groups
based on the frequency of their data frames. Specifically, these groups revolve around
frequencies of approximately 200 Hz, 1000 Hz, and around 2000 Hz. The frequency appears
to have no discernible impact on the accuracy. Many studies within the first frequency
group achieved a higher accuracy compared to those in the second and third groups. In
contrast to the frequency, the number of channels appears to significantly influence the
accuracy. Both datasets [17,30] share a similar number of categories and utilize EMG,
gyroscopes, and accelerometers for data collection. However, despite its significantly larger
size, the dataset published by the authors of [30] yields lower accuracy compared to the
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dataset published by the authors of [17]. This discrepancy was attributed to the different
number of channels used in each setup.
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From examining Figure 6, it is evident that most studies utilized eight-channel EMG
data, which represents the maximum number of channels used, excluding the study
published by the authors of [48]. This study stands out for utilizing a high-definition
device with an 8 × 16 channel matrix. In the study published by the authors of [48], the
researchers achieved a 78% accuracy rate using a relatively compact database consisting of
only 120 entries, spanning 4 subjects and 10 classes. When comparing the study published
by the authors of [48] with other studies based on dataset size, two papers stood out due
to their smaller dataset sizes and their exclusive reliance on EMG sensors. Both of the
studies published by the authors of [63,92] achieved accuracies exceeding 90%, which is
higher than that obtained by the authors of [48]. However, it is essential to approach these
results with caution. The high accuracy rates achieved by the authors of [63,92] might be
attributed to their tests being conducted on a single subject, while the study published by
the authors of [48] tested on four subjects. The difference in subject count can significantly
influence results, making direct comparisons less conclusive. A dedicated study focusing
on the optimal number of channels is essential for determining the ideal configuration for
obtaining the most accurate results.

The results obtained were related to several parameters, among which include the fol-
lowing parameters: the dataset and the number of subjects participating in the experiment.
According to Table A2, the best result is obtained via the search conducted by the authors
of [85], which achieved an accuracy of 99.6%, and the dataset used in this approach was
collected from one subject. In the study published by the authors of [38], their experiments
were conducted on a single subject; the observed accuracy rate was 80%, while the accuracy
rate decreased to less than 34% for the multi-subject dataset. Figure 6 gives an overview of
the number of subjects who participated in the experimentation of different approaches
treated in this study; in most cases, the number of subjects was less than five. This study
should also investigate the best placement locations for the sensors, as both the number
and location can significantly impact the quality of the data and subsequent analysis.

Recognizing sign language through EMG signals poses a significant challenge due
to the complex and diverse muscle movements involved in signing. Nevertheless, the
identification of key muscles that play a crucial role in accurate recognition, such as those



Sensors 2023, 23, 8343 11 of 43

responsible for finger movements and wrist extension, is essential. Targeting these muscles
using advanced machine learning algorithms to analyze their EMG signals has led to the
development of highly accurate sign language recognition systems. There are several
muscles in the forearm and hand that are responsible for finger movement and control.
These muscles are divided into two groups: the extrinsic muscles, which originate in the
forearm and extend into the hand, and the intrinsic muscles, which are located entirely
within the hand. The extrinsic muscles involved in controlling finger movements can
be divided into two groups: the flexor muscles and the extensor muscles. The flexor
muscles responsible for finger flexion include the flexor digitorum profundus muscle,
flexor digitorum superficialis muscle, and flexor pollicis longus muscle. On the other
hand, the extensor muscles, namely the extensor digitorum muscle, extensor pollicis longus
muscle, and extensor pollicis brevis muscle, play a key role in finger extension.

Finger control relies on a set of intrinsic muscles, namely the lumbrical muscles,
interossei muscles, thenar muscles, and hypothenar muscles. The interossei muscles play a
pivotal role in the abduction and adduction of the fingers, allowing for movements away
from and towards the midline of the hand. On the other hand, the lumbrical muscles
contribute to flexing the metacarpophalangeal joints and extending the interphalangeal
joints of the fingers. These intricate actions are essential for performing precise finger
movements, grasping objects with varying degrees of force, and executing intricate hand
gestures with ease and finesse. The combined efforts of these intrinsic muscles facilitate
our ability to manipulate our fingers with accuracy and control. The collective efforts of
both the extrinsic and intrinsic muscles synergistically contribute to the fine motor control
required for precise finger movements.

The exploration of finger muscles and their potential for sign language (SL) recognition
has revealed intriguing patterns. Figure 7 illustrates how many papers targeted each muscle
on the data collection phase. Notably, only one paper thoroughly investigated the intrinsic
muscles that control finger movements, indicating a significant gap in our understanding
and utilization of these muscles for SL recognition. Meanwhile, the extensor digitorum and
flexor digitorum superficialis muscles have emerged as widely used and studied in this
context, demonstrating promising results. However, it is important to acknowledge the
untapped potential of other finger muscles. Leveraging the capabilities of these overlooked
muscles presents a thrilling opportunity for further advancements in SL recognition using
electromyography (EMG) signals. By harnessing the untapped potential of these muscles,
we can potentially uncover new avenues for enhancing SL recognition and developing
solutions to improve communication with the deaf community through sign language.

Data acquisition is a crucial step in sign language recognition using electromyography
(EMG) signals. In this process, EMG sensors are attached to the muscles of the signer’s
forearm to capture the electrical activity generated during sign language production. The
EMG signals are then amplified, filtered, and sampled at a high frequency to obtain a
reliable representation of the muscle activity. The resulting data are typically preprocessed
by removing artifacts and noise, followed by feature extraction and selection to capture
the relevant information about the sign language. Accurate data acquisition is critical
to ensure the reliability and effectiveness of sign language recognition systems that use
EMG signals. Several factors need to be considered to ensure accurate and reliable data
acquisition. These include the selection of appropriate EMG sensors and placement of
sensors on the appropriate muscle groups. The sampling frequency and filtering of the EMG
signals also play a vital role in ensuring accurate data acquisition. Proper preprocessing
techniques, such as noise removal and artifact removal, are critical to reducing interference
and improving the quality of the EMG signals.
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Studying the used datasets is another important aspect of the research. The dataset
should contain a diverse range of sign language gestures, with sufficient examples for each
gesture to ensure robust recognition accuracy. The number of classes in the dataset should
correspond to the number of unique signs in the sign language. The choice of subjects
is also critical to ensure that the dataset is representative of the population that will use
the system. Subjects with different levels of sign language proficiency, hand sizes, and
muscle strength should be included to ensure that the system is robust and can be used
by a diverse range of users. The size of the dataset should be large enough to provide
sufficient training examples for machine learning algorithms to achieve high recognition
accuracy. The use of publicly available datasets can provide a benchmark for comparing
different approaches and facilitating the development of sign language recognition systems.
Table A2 provides a summary of the main factors involved in the process of building the
dataset and acquiring data.

From Figure 8, we can observe that most of the studies use datasets with less than
40,000 entries. Additionally, the majority of these papers aimed to identify less than
50 distinct classes. The study published by the authors of [14] stands out as the sole study
with a dataset size surpassing 40,000 entries, boasting 85,000 entries to discern 86 classes,
and achieving an accuracy rate of approximately 94%. In contrast, the study published by
the authors of [25] managed to attain an accuracy rate of 91% in identifying 121 classes with
a significantly smaller dataset of roughly 1500 entries. Even though the study published
by the authors of [14] incorporated EMG, along with accelerometers, gyroscopes, and
magnetometers, the study published by the authors of [25] utilized just the EMG combined
with accelerometers. We can conclude that while database size plays a significant role,
achieving a high level of accuracy is still possible with reasonably sized databases.
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Of the 88 papers reviewed, all papers chose to record their data afresh. This overwhelm-
ing preference for original data collection can be attributed to the inherent regional nature
of sign languages. According to the Ethnologue report of 2023, there are over 159 official sign
languages globally. Given this immense diversity, relying on a single predefined dataset
may not provide a comprehensive or accurate representation of a specific sign language, as
nuances and variations exist across regions. Furthermore, this trend can also be attributed
to the fact that this research area is relatively recent. Newer fields often require primary
data collection, as standardized datasets might not yet exist or the available datasets might
not be extensive enough to encompass the depth and breadth of the topic under study.
Thus, researchers often prioritize gathering fresh data that is more tailored to their study’s
focus and region.

Upon reviewing the literature, we discovered six open datasets detailed in Table 3.
Three of these datasets were centered on alphabet letters from the American, Italian, and
Arabic sign languages. Meanwhile, another dataset emphasized individual words, and
one was tailored towards sentences. Given the limited number of sign languages covered,
the size of these datasets, the number of subjects involved, and the scope of vocabulary
included, many researchers opted to create their own personalized datasets to better suit
their specific research needs.

Table 3. sEMG datasets for sign language recognition.

Sign Language Nbr Classes Type Subjects Size Device

Arabic sign language 28 Alphabet 3 9350 Myo armband
Italian sign language 26 Alphabet 1 780 Myo armband

American sign language 10 Word 8 320 Myo armband
Indian sign language 6 Sentence 19 223 Myo armband

American sign language 26 Alphabet 9 234 × 5 s Myo armband
General sign language 5 Emotion 12 360 -

4. Feature Extraction

Feature extraction plays a vital role in developing a reliable sign language recognition
system using electromyography (EMG) signals. The study published by the authors
of [101,102] affirms the importance of meticulously describing the signals to execute an
accurate classification. The feature extraction process involves identifying and extracting
pertinent information from the raw EMG signals, which represent the electrical activity of
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muscles [103]. The extracted features include amplitude, frequency, and power spectrum,
among others, to capture key characteristics. Similarly, in sign language recognition, feature
extraction focuses on extracting relevant features from the hand and arm motions and
shapes of the signer. These features are then utilized to classify signs and accurately
interpret the intended message. Commonly employed techniques for feature extraction
encompass time-domain analysis, frequency-domain analysis, and time-frequency analysis,
all of which have proven effective in extracting meaningful features from signals. Proper
feature extraction is crucial for accurate classification of hand gestures and ensuring precise
recognition of signs. These features encapsulate various aspects of the EMG signal, such
as magnitude and frequency, providing a concise representation that can be employed for
classification. Once the appropriate features are extracted, a machine learning algorithm
can be trained on these features to learn the relationships between the extracted features
and the corresponding signs, resulting in enhanced accuracy and robustness.

The classification of EMG signals in sign language recognition has been a subject of
extensive research, leading to the exploration of various types of features [104–107]. Table 4
presents a collection of commonly employed features for EMG-based sign language recog-
nition. These features have been carefully selected and widely utilized in the literature to
capture the relevant information from EMG signals and enable accurate classification. The
diversity of these features reflects the different aspects of EMG signals that are informative
for sign language recognition. By leveraging these features, researchers have been able
to develop robust classification models capable of interpreting the intended signs with
high accuracy. It is worth noting that the selection and combination of features may vary
depending on the specific requirements of the sign language recognition system and the
characteristics of the EMG signals under consideration.

Based on the insights obtained from Table 4, it can be observed that time-domain
features are more frequently employed compared to frequency-domain features. Time-
domain features are prominently favored due to their ability to capture important temporal
characteristics and dynamics of the signals. These features offer valuable insights into the
amplitude variations, temporal patterns, and timing information within the EMG signals.
By emphasizing the time-domain features, researchers have been able to effectively extract
relevant information related to muscle activation timing, muscle contraction duration, and
temporal patterns associated with muscle activity. While frequency-domain features are
also important for capturing spectral content and frequency-related characteristics, the
prevalence of time-domain features in the literature suggests their significance in sign lan-
guage recognition applications utilizing EMG signals. Although some comparative studies
have indicated that frequency-domain features offer better performance in gesture classifi-
cation, a specific study published by the authors of [108] explored thirteen different features
from both the time domain and frequency domain of EMG signals for hand movements.
The analysis revealed that features in the frequency domain exhibited superior dominance
and signal characterization compared to features in the time domain. This suggests the
potential advantages of utilizing frequency-domain features for accurate and effective
gesture classification based on EMG signals. In addition, another research paper [109] fur-
ther reinforced the superiority of frequency-domain features over time-domain features in
terms of classification accuracy. The experimental results clearly demonstrated a significant
improvement in the classification performance when utilizing frequency-domain features
compared to time-domain features. This finding strengthens the notion that frequency-
domain analysis provides valuable insights into the signal characteristics, enabling a more
precise and reliable classification of signals.

As illustrated in Figure 9, there has been a marked increase in the use of diverse
features for sign language classification from EMG data, spanning the period from 2015 to
2022. Predominantly, time-domain features, such as variance, mean absolute value, and
root mean square, were the most widely used between 2015 and 2021, underscoring their
central role during this time frame. In addition, from 2020 to 2022, the employment of other
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features, including mean frequency, kurtosis, and skewness, became apparent, indicating a
broadening in the array of features leveraged in this type of data analysis.

Table 4. Features used for EMG-based SL recognition.

Feature Paper Count Feature Class Paper Count

Variance (VAR) 17

Time-
domain/statistical

features
138

Mean absolute value (MAV) 46

Modified mean absolute value 4

Root mean square (RMS) 27

Standard deviation (SDV) 20

Average amplitude change (AAC) 8

Maximum (MAX) 6

Minimum 4

Median 4

Average power 2

Modified mean frequency (MMF) 3

Frequency-domain
features

30

Mean frequency (MFR) 7

Modified median frequency 2

Median frequency 5

Reflection coefficient 1

Power spectral density 2

Discrete Fourier transform 2

Spectral mean 1

Spectral standard deviation 1

Spectral skewness 1

Maximum energy frequency 1

Power in the channel 2

Standard deviation (SDV) 2

Temporal and spectral moment 2
Time-frequency

features
6Moving variance 2

Short-time Fourier transform 2

Histogram 2

Signal shape and
distribution

Features
8

Minimum fractal length 1

Maximum fractal length 4

Shape factor 1

Kurtosis (KUR) 9 Higher-order
statistics

20
Skewness (SKW) 11

Mel frequency cepstral coefficient 3 Mel frequency
cepstral coefficients 4

Mean of gammatone cepstral coefficient 1

Wavelet transform 3

Wavelet transform
coefficients

5
Scale-average wavelet transform

(SAWT) 1

Wavelet energy 1
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Table 4. Cont.

Feature Paper Count Feature Class Paper Count

Autoregressive coefficient (ARC) 13 Autoregressive
model coefficients 13

Waveform length (WVL) 21

Waveform-based
features

49
Zero crossing rate (ZCR) 17

Willison amplitude 4

Simple square integral (SSI) 7

Log detector (LGD) 5

Other features 37

Sample entropy 1

Permutation entropy 1

Mean power 1

Power spectrum ratio 1

Peak frequency 2

Spurious-free dynamic range 1

Log energy 1

Shannon energy 2

Irregularity factor 1

Katz fractal dimension 1

Integrated absolute value 3

Slope sign changes 11

Hjorth parameter 2

Linear prediction coefficient 1

Difference absolute standard
deviation value 2

Root squared zero-order
moment normalized 1Sensors 2023, 23, x FOR PEER REVIEW 17 of 41 
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emerged as the prominent approaches for EMG-based sign language recognition. The uti-
lization of CNNs and LSTMs indicates a growing interest in leveraging the power of deep 
learning techniques to extract meaningful features from EMG signals and accurately clas-
sify sign gestures. These observations highlight the evolving landscape of sign language 
recognition techniques over time, driven by advancements in machine learning and in-
creased understanding of EMG signal processing. 
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5. Classification Approaches

In this section, we present an overview of the methodologies and algorithms employed
in the various studies examined during our comprehensive literature review. The classi-
fication of signs in sign language using EMG signals encompasses a range of techniques,
predominantly machine learning and deep learning. These approaches leverage diverse
classifiers when working with extensive signal datasets. By utilizing EMG, they achieved
notable accuracy rates in classification. Selecting the most suitable algorithm relies on the
specific task and available dataset, often requiring experimentation with multiple algo-
rithms to identify the optimal choice for a given objective. Table A1 (Appendix A) provides
a summary of all approaches discussed in relation to sign language recognition and sEMG
signals. By providing more recent results, as well as important historical context, this table
and the corresponding discussion provide insight into current trends in sign language
recognition using sEMG signals.

Based on the insights gathered from Figure 10, it is evident that various approaches
have been employed for sign language recognition using electromyography (EMG) signals.
Notably, between 2010 and 2014, hidden Markov models (HMMs) and K-nearest neighbors
(KNNs) were the predominant techniques utilized in this field. These algorithms proved ef-
fective in capturing the temporal dependencies and classifying sign gestures based on EMG
data during that period. However, as time progressed, between 2014 and 2018, there was a
shift towards artificial neural networks (ANNs) and support vector machines (SVMs) for
sign language recognition. This transition likely occurred due to the increasing availability
of more extensive datasets and advancements in computational resources, enabling the
application of more complex models. Lastly, between 2018 and 2023, convolutional neural
networks (CNNs) and long short-term memory (LSTM) models emerged as the prominent
approaches for EMG-based sign language recognition. The utilization of CNNs and LSTMs
indicates a growing interest in leveraging the power of deep learning techniques to extract
meaningful features from EMG signals and accurately classify sign gestures. These ob-
servations highlight the evolving landscape of sign language recognition techniques over
time, driven by advancements in machine learning and increased understanding of EMG
signal processing.
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5.1. K-Nearest Neighbor-Based Approaches

The K-nearest neighbors (KNNs) algorithm is a supervised learning algorithm utilized
for classification and regression tasks. Its principle involves identifying the k-nearest data
points to a given input and classifying the input based on the majority class among those
neighbors. In the domain of EMG signals, KNNs can be employed to classify different types
of movements based on the collected EMG data. Sign language recognition systems also
utilize KNN-based approaches. For instance, Amor et al. [95] developed a human–machine
interface using the Myo armband, which contains eight EMG sensors placed on the forearm.
They conducted a study utilizing the MFCC and TDW techniques, along with the KNN
classifier to recognize seven hand configurations in French sign language (LSF) in real
time. The dataset for this study comprised 2480 samples obtained from 4 healthy subjects,
achieving an average accuracy of 90%. KNNs were also applied by Kim, J. et al. [94] for sign
language recognition, specifically for recognizing seven words in German sign language
(GSL). The authors utilized K-nearest neighbor (kNN) and support vector machine (SVM)
algorithms. They collected a dataset of 560 samples from 8 users using 2 EMG sensors and
a 3-axis accelerometer attached to the arm. According to the authors, the KNN classifier
outperformed the SVM classifier in terms of recognition results, yielding an accuracy of
96.31%. In another study [96], the researchers employed different classifiers, including
support vector machines (SVMs), decision tree (DT), linear discriminant analysis (LDA),
and K-nearest neighbor (KNN), for recognizing 20 commonly used Persian sign language
(PSL) gestures using both EMG and IMU data. The system utilized a low-cost, six-axis IMU
(accelerometer and gyroscope), along with a four-channel sEMG and an Arduino as the
mainboard for feature extraction. The dataset was collected from 10 subjects, with each
subject performing the 20 PSL signs 10 times, resulting in a dataset of 2000 instances. The
KNN classifier achieved the highest recognition rate of 96.13% when using 25 selected
features. The authors mentioned that while the SVM RBF classifier can provide higher
accuracies, it is computationally intensive and complex. Therefore, they found the KNN
classifier to be more practical due to its satisfactory accuracies.

5.2. Support Vector Machine-Based Approches

In recent times, support vector machines (SVMs) have emerged as a popular choice for
processing EMG pattern recognition tasks in sign language recognition using EMG signals.
SVMs offer a robust classification method that excels in handling high-dimensional data and
achieving high classification accuracy, even with limited training samples. Consequently,
SVMs are well-suited for sign language recognition tasks characterized by high-dimensional
data and a scarcity of training samples. Researchers have successfully employed SVMs
in various sign language recognition systems. For instance, Divya et al. [56] utilized the
support vector machine (SVM) to recognize five Indian sign language words obtained
from six subjects. The signals representing different signs were captured using BIOPAC-
MP-45, and the dataset employed in this study comprised 250 samples. Remarkably,
this approach achieved an average accuracy of 90%. To achieve real-time recognition
of 80 commonly used American sign language (ASL) words, Jian et al. [36] proposed
an innovative approach that combines the inertial measurement unit (IMU) and surface
electromyography (sEMG) for detecting hand gestures. They employed four distinct
algorithms—decision tree (DT), support vector machine (LibSVM), nearest neighbor (NN),
and naïve Bayes—to analyze a dataset comprising 24,000 instances. The data, collected
from four subjects, involved utilizing the InvenSense MPU9150, which integrates various
sensors like EMG, accelerometer, gyroscope, and magnetometer. Their approach achieved
an average accuracy of 96.16%. In another notable study [37], the researchers employed
surface electromyography (sEMG) alongside a wrist-worn inertial sensor to classify the forty
most frequently used words in American sign language (ASL), gathered from four subjects.
They applied a feature selection filter and tested multiple ranking algorithms, including
support vector machine (LibSVM), naïve Bayes, decision tree, and nearest neighbor. Their
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proposed system demonstrated a good average classification rate of 95.94% for the selected
set of 40 ASL words.

Cassandra et al. [42] developed a sign language recognition (SLR) system that utilizes
surface electromyography (sEMG) signals and an accelerometer. This system is capable
of recognizing a set of 50 commonly used American sign language words. The dataset
employed in their study was collected from 10 subjects, each wearing two Myo armbands
placed on their forearms. To gather an adequate amount of data, each subject performed
the different signs 20 times, resulting in a total dataset of 10,000 instances. The proposed
approach employed the support vector machine (SVM) algorithm for classification. Three
validation techniques were applied to the dataset. Firstly, a 5-fold cross-validation was
performed on the training set to assess the model’s performance. Secondly, holdout
validation was conducted using data exclusively from the training subjects. Lastly, leave-
one-out validation was employed, where one subject’s data was excluded from training
the classifier to evaluate its generalizability. The achieved accuracy was 33.66%. In their
research, Gupta [57] proposed a machine learning approach based on a radial basis kernel
and multiclass support vector machine (SVM) for Indian sign language recognition. They
utilized the Delsys Trigno Wireless EMG system, which was placed on the forearm and
consisted of one accelerometer sensor and three electromyography (EMG) signal sensors.
The study involved 10 hand configurations, and data was collected from 6 subjects, resulting
in a dataset of 1200 samples. The authors evaluated the classification accuracy using
different data sources. The accuracy achieved using only the accelerometer was 82.14%,
while when using only the sEMG signal, it increased to an average accuracy of 86.29%. The
best accuracy of 87.5% was attained when both the sEMG and accelerometer data were
combined. In a separate study by João et al. [66], supervised machine learning based on
binary support vector machines (SVMs) was developed for recognizing 20 letters from
Brazilian sign language (LIBRAS). They used the electromyogram (EMG) signals provided
by the Myo armband. The signals used in this approach were obtained from a single
subject. For each letter, 110 samples were used for training. The accuracy of the collected
dataset varied between 4% and 95% depending on the shape of the hand. The authors
acknowledged substantial limitations despite being able to identify the gestures based on
the obtained results.

Celal and Ferat [38] developed a sign language recognition (SLR) approach using the
support vector machine (SVM) and ensemble learning (bagged tree) algorithms. Their
system aimed to recognize 27 American sign language (ASL) gestures, which included
one gesture for the neutral position and twenty-six gestures representing English alphabet
letters. The surface electromyography (EMG) signal was acquired from the Myo arm-
band, placed on the right forearm of 10 subjects. Various feature extraction methods were
employed in the study, including power spectral density, time domain, average power,
and frequency domain. For time- and frequency-domain feature extraction, the approach
utilized FFT band power characteristics and PSD band power characteristics. Through
experimentation with both single subject (approximately 2080 samples) and multi-subject
(approximately 10,400 samples) datasets, the authors found that the mean power in each
channel characteristic yielded the best results among the feature extraction methods. Addi-
tionally, they observed that the band power characteristics of FFT outperformed the band
power characteristics of PSD. When evaluating the classifiers, the bagged tree and SVM
algorithms, the authors noted that the accuracy obtained with the single-subject dataset was
superior to that of the multi-subject dataset. Specifically, the bagged tree classifier achieved
an accuracy of 80% with the single-subject dataset, while the SVM classifier achieved an
accuracy of 60.85%. Consequently, the authors concluded that the bagged tree classifier
outperformed the SVM classifier in their SLR system.

5.3. Hidden Markov Model-Based Approaches

Hidden Markov models (HMMs) are statistical tools widely used for modeling se-
quential data, including speech and sign language. They have been employed to recognize
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patterns in data, such as the transition between sign language gestures. In the context
of sign language recognition, HMMs are often combined with electromyography (EMG)
signals to analyze muscle movements, gaining insights into hand gestures and enhancing
sign language recognition systems. Xu et al. [15] demonstrated the effectiveness of multi-
channel EMG and three-axis accelerometer (ACC) sensors for hand gesture classification in
Chinese sign language. They utilized multi-stream hidden Markov models and a decision
tree to recognize 72 words, achieving accuracies of 95.3% and 96.3% for two subjects. Their
continuous sign language recognition system achieved an accuracy of 72.5% for 40 sentence
types and an overall word accuracy of 93.1%. In another study by the authors of [16],
eight EMG sensors and two three-dimensional accelerometers (3D-ACCs) placed on the
right forearm were used. Employing a machine learning technique based on decision trees
and multi-stream HMMs, the authors recognized 121 Chinese sign language subwords. The
dataset, collected from a single subject, consisted of 2420 instances, and an average accuracy
of 95.78% was achieved. Additionally, the study published by the authors of [20] proposed
a pattern recognition technique for continuous phonology and component Chinese sign
language classification using ACC and sEMG signals. They employed four sEMG sensors
and a tri-axial accelerometer, training a machine learning model with a HMM algorithm
and dynamic time warping (DTW) technique. Experimental analysis involving 53 base
units and 223 characters achieved an accuracy of 96.01% ± 0.83% for the base units and
92.73% ± 1.47% for the characters. The dataset consisted of 36 samples for each character
and 20 repetitions for 5 experimental durations, totaling 34,524 samples collected from
5 right-handed subjects. Moreover, Yun Li et al. [27] utilized a multi-stream hidden Markov
model (MSHMM) combined with linear discriminant classifiers (LDCs) and Gaussian mix-
ture models (GMMs) for Chinese sign language recognition. They employed a combination
of a three-axis accelerometer (ACC) and four surface electromyographic (sEMG) sensors
placed around the forearms of five subjects. The dataset contained ACC and EMG data
from 200 sentences and 120 signs, with 2400 sentence samples. The system achieved an
accuracy of 86.7% for sentences and 96.5% for a vocabulary of 120 signs. In summary, the
integration of HMMs with EMG and ACC signals has shown promising results in sign
language recognition, with high accuracies achieved in various studies across different
datasets and sign languages.

5.4. Artificial Neural Network-Based Approaches

In recent years, researchers have found artificial neural network (ANN) tools to be
highly promising, particularly in the field of sign language recognition using EMG signals.
ANNs offer several advantages, including their ability to handle ambiguous and uncertain
data, which is crucial in EMG signal analysis. Moreover, ANNs are renowned for their
excellent generalization capabilities. The study published by the authors of [18] presented
a system that employed an inertial measurement unit (IMU), gyroscope, and surface
electromyography (sEMG) sensor. The Myo armband served as the signal acquisition
device, capturing 48 unique words, each repeated 100 times. The study utilized wavelet
denoising techniques and applied segmentation using the Teager–Kaiser energy operator
(TKEO) thresholds. They explored the use of a feature-based artificial neural network
(ANN) to recognize 48 words in Chinese sign language, achieving an impressive success
rate of 97.12%. Varadach et al. [98] utilized the “TMS porti” system, which was placed
around the forearm muscles for recording EMG signals. This system featured eight-channel
electrodes and served as the data acquisition tool. To recognize 10 Thai sign language
alphabet letters, the authors proposed an approach based on ANN artificial neural networks
using the backpropagation technique. The dataset employed in this study comprised a
total of 2000 samples collected from a single subject, with each alphabet repeated 200 times.
The experimental analysis of the dataset yielded an average accuracy of 95%.

In the study published by the authors of [86], a wireless armband featuring eight sEMG
sensors was developed and designed for recording sEMG signals at a frequency of 600 Hz.
The armband was placed on the right forearm and used to capture the sEMG signals
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associated with 38 hand shapes in Korean sign language (KSL), including 14 consonants,
17 vowels, and 7 digits. The researchers proposed an approach based on an E-ANN
structure, which involved combining multiple ANN classifiers. This approach achieved
an impressive accuracy of 97.4%. During testing, the authors determined that the optimal
configuration for this approach involved eight ANN classifiers and a sample size of three
hundred. Another approach, introduced by Cristina et al. [40], utilized a simple neural
network architecture consisting solely of fully connected layers and employing the leaky
ReLU activation function. The researchers employed a Myo armband to record EMG
signals from thirteen hand shapes, including eight hand gestures and five letters (‘V’,
‘L’, ‘I’, ‘F’, and ‘D’), in American sign language (ASL). The dataset used in this approach
comprised 1300 samples collected from 50 subjects, with each gesture repeated 2 times. The
system achieved an accuracy of 99.78% for the recognition of 7 gestures and 99.31% for the
recognition of all 13 gestures.

In the study published by the authors of [41], the researchers employed the princi-
pal component analysis (PCA) filter, along with a multilayer perceptron neural network
(MPN), for the classification of surface EMG signals associated with nine words from
American sign language (ASL). The experiments were conducted using the SCEPTRE
database, which consisted of data captured from two Myo armbands placed on the fore-
arms of two hands belonging to three subjects. The dataset used in these experiments
included several attributes, such as 6 gyroscope vectors, 6 accelerometer vectors, 6 position
vectors, and 16 EMG vectors, resulting in a range from 34 to 20 attributes. The average
precision for the recognition of the nine words by the three subjects was as follows: When
using the attributes sEMG, accelerometer, gyroscope, and orientation (34 attributes), the
precision obtained was 100% with the multilayer perceptron and 97.77% with the mul-
tilayer perceptron using PCA. With the sEMG, accelerometer, and gyroscope attributes
(29 attributes), the accuracy obtained was 99.25% with the multilayer perceptron and
94.81% with the multilayer perceptron using PCA. Using the sEMG, accelerometer, and
orientation attributes (29 attributes), the accuracy obtained was 100% with the multilayer
perceptron and 99.25% with the multilayer perceptron using PCA. By utilizing the sEMG
and accelerometer attributes (23 attributes), the accuracy achieved was 95.55% with the
multilayer perceptron and 90.62% with the multilayer perceptron using PCA. When using
the sEMG and gyroscope attributes (23 attributes), the accuracy obtained was 77% with
the multilayer perceptron and 74.07% with the multilayer perceptron using PCA. With the
sEMG and orientation attributes (23 attributes), the accuracy obtained was 93.44% with the
multilayer perceptron and 93.33% with the multilayer perceptron using PCA. Finally, using
only the sEMG attributes (16 attributes), the accuracy achieved was 47.4% with both the
multilayer perceptron and the multilayer perceptron using PCA.

In another study by A.L.P Madushanka et al. [99], a system was developed based
on nine different artificial neural network (ANN) classifiers. The system utilized vari-
ous sensors of the Myo armband, including the inertial measurement unit (IMU) sensors
(accelerometer, gyroscope, and magnetometer/orientation) and the surface electromyog-
raphy (sEMG) sensor, to recognize 12 signs in Sinhala sign language. The study involved
six subjects, with each subject repeating the twelve signs five times. The dataset used in
this study comprised a total of 360 samples, and the accuracy achieved was 94.4%. In the
study published by the authors of [24], a real-time Chinese sign language (CSL) recognition
model was proposed for the classification of 15 CSL gestures extracted from sEMG signals
acquired by the Myo armband. The study involved 10 healthy subjects, and a total of
5250 samples were utilized. Several techniques were employed for EMG signal process-
ing and feature extraction, including the energy spectrum approach, short-term Fourier
transform, sliding window approach, and t-distributed stochastic neighbor embedding
(T-SNE). An ANN algorithm with three layers was trained using machine learning for this
application. Experimental results demonstrated an accuracy of 88.7% for the recognition of
the 15 signs.
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5.5. Convolutional Neural Network-Based Approaches

Convolutional neural networks (CNNs) are a specific type of neural network that excel
in image classification tasks. They have been widely employed in several applications, such
as object detection, image recognition, and facial expression recognition. In the domain
of electromyography (EMG), CNNs have also been utilized for hand gesture recognition
in sign language. For instance, in the work presented by the authors of [14], a real-time
system was developed using deep learning to recognize 86 words in Chinese sign language.
The dataset consisted of data collected from 20 subjects using the surface electromyography
(sEMG) and inertial measurement unit (IMU) sensors of the Myo armband. The proposed
approach utilized the CNN algorithm based on the VGG architecture. It achieved an
average precision ranging from 94.72% to 98.92%. In another study by Qian et al. [39], a
deep learning-based system named MyoSign was proposed for American sign language
(ASL) recognition. The system leveraged both inertial and EMG signals. The authors
introduced a multimodal approach that combined convolutional neural networks (CNNs),
long short-term bidirectional memory (LSTM), and connectionist temporal classification
(CTC). The system achieved a word precision of 93.7% and a sentence accuracy of 93.1%
when matching 70 commonly used ASL words and 100 ASL sentences from 15 subjects,
utilizing a lightweight handheld device capable of capturing EMG and inertial signals. In
the study published by the authors of [84], the researchers employed a scale average wavelet
transform and a basic CNN classifier to recognize three manual signs and three handshape
sign language gestures. The EMG signals were obtained from a single subject using the
Myo armband, resulting in a dataset of 1200 samples. The average accuracy achieved using
this approach was 94%. Furthermore, in the study published by the authors of [85], a
recognition system was developed using both CNNs and LSTMs to recognize 30 Korean
sign language gestures. The EMG and IMU sensors of the Myo armband were utilized
to capture the signals corresponding to different signs. Initially, the learning architecture
of the neural network was created using data from a single subject, and subsequently,
an accuracy of 99.6% was achieved. Overall, CNNs have proven to be effective in sign
language recognition tasks, demonstrating high accuracy rates in various studies across
different sign languages and datasets.

5.6. Long Short-Term Memory-Based Approaches

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) known
for its ability to capture long-term dependencies in sequential data. Within the electromyo-
graphy (EMG) signal context, LSTMs have been employed to analyze and classify various
movement patterns. Researchers have successfully utilized LSTMs to classify hand and
finger movements in EMG signals, demonstrating their potential in EMG signal analysis
and sign language recognition systems. For instance, Paolo S et al. [81] combined surface
IMU and EMG data obtained from the Myo gesture control armband to develop a deep
neural network based on bidirectional LSTM architecture for recognizing 26 letters of
Italian sign language (LIS). The dataset consisted of 30 samples for each letter, totaling
780 samples collected from a single individual wearing a Myo armband on the right arm.
The average accuracy achieved using this approach was 97%. LSTMs were also utilized
in the research by the authors of [78], where CNNs (convolutional neural networks) and
LSTMs were combined for recognizing 28 hand shapes representing Arabic alphabet letters.
Electromyographic signals from the eight sensors of the Myoware armband were used,
and 400 samples were recorded for each hand shape. In total, three subjects contributed to
the recording of a dataset of 9350 samples. The approach involved seven CNN layers, an
LSTM layer, and a GRU layer for feature extraction, followed by two dense neural network
layers for classifying the twenty-eight letters in ArSL. The average precision obtained in
this study was 98.49%.

In another study published by the authors of [80], a deep learning model composed of
two sub-networks was developed to recognize seven hand gestures in Arabic sign language
(ArSL). The EMG signals were obtained from the eight sensors of the Myoware armband,
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which were evenly placed around the forearm. The dataset, involving 8 subjects (4 deaf
and 4 hearing), comprised a total of 15,000 samples. The authors observed that increasing
the number of sensors improved the accuracy of the results. Therefore, they proposed
acquiring the data from the eight Myoware armband sensors and estimating the signal
curve using barycentric interpolation. The proposed deep learning approach utilized CNNs
with expanded convolution for feature extraction from EMG signals and two LSTM layers
for extracting temporal features from sEMG signals. The recognition rate achieved using
this approach was 97.4%. Moreover, a study by the authors of [43] achieved an accuracy of
97.9% for 20 signs performed by 20 subjects, utilizing sEMG signals obtained from the Myo
armband placed on the subjects’ forearms. The researchers developed a machine learning
model based on the bilinear model and LSTM, with 10 samples recorded for each sign. The
dataset used in this study consisted of 4000 instances.

5.7. Other Proposed Approaches

Jinuk K et al. [70] proposed an approach for sign recognition that extracted sign lan-
guage primitives using motion sensors and surface electromyography (EMG) data obtained
from eight EMG sensors and three-axis IMU sensors of the Myo armband. In this approach,
12 different hand shapes were classified as a handshape vector by summing the readings
from different Myo armband sensors placed at the brachial level. Additionally, six hand
motion primitives were classified as motion direction vectors by calculating Euler’s angle
differences. The authors claimed that their proposed primitive sign language extraction
system could quickly and accurately identify sign language words, thereby reducing the
computational load in sign language recognition. In another study, Muhammad U et al. [87]
proposed a supervised machine learning approach based on a linear discriminant classifier
to recognize the 26 alphabet letters of Pakistani sign language. They employed empirical
mode decomposition (EMD) to remove unwanted interferences from the signal. Three
sEMG sensors connected with the set SS2LB were placed on the interior side of the forearm
to acquire the sEMG signals. The BIOPAC system was used to collect and convert the
analog signals into digital signals. Each alphabet was repeated 30 times, resulting in a
dataset of 780 samples. The success rate achieved using this technique was 81%.

In a study by the authors of [12], an approach was developed to recognize the
26 alphabet letters of Irish sign language using sEMG data obtained from the eight sensors
of the Myo armband. Initially, only sEMG data were used, but later IMU data were added,
resulting in a 10% increase in accuracy. The dataset used in the study was collected from
12 subjects wearing Myo armbands on both forearms. Each subject performed the different
signs five times, resulting in a total of 1560 instances. To improve the results, the authors
customized their feature selection approach using the “feature importance” function of
the random forest classifier. This helped identify the most important features for letter
recognition and adjust their methods accordingly. The study employed various machine
learning techniques from the scikit-learn toolkit, including linear regression, naïve Bayes,
random forest, ensemble methods, and support vector machines. Through experimentation
and optimization, they achieved an accuracy of 78%, with the best accuracy obtained
using models based on the random forest and ensemble methods. In another study con-
ducted by Yi et al. [17], the deep learning method was applied for Chinese sign language
recognition based on wearable sensors. The proposed approach utilized a deep belief
net (DBN) and involved the combination of three different sensors: electromyography
(sEMG), accelerometer (ACC), and gyroscope (GYRO). The study focused on recognizing
150 Chinese sign language subwords obtained from 8 subjects. Each subject repeated the
subwords 5 times in each of 5 sessions, resulting in a total of 3750 CSL subwords collected
per subject. Three sensor fusion strategies, namely data-level fusion, feature-level fusion,
and decision-level fusion, were explored. The approach achieved an average accuracy of
95.1% for user-dependent testing and 88.2% for user-independent testing.

In a study by Simin Yuan et al. [21], sEMG signals were utilized to recognize 30 Chinese
sign language alphabet letters. The Delsys Trigno division, which contains eight sEMG
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sensors placed on the forearm, was employed for data collection from four hearing subjects.
The dataset used in this study comprised 600 samples. To enhance the accuracy of the
machine learning model, the researchers first applied a notch filter to preprocess the raw
data. They then utilized several techniques for feature extraction, including mean absolute
value (MAV), fourth-order autoregressive (AR) coefficients, Wilson amplitude (WAMP),
and waveform length (WL). The proposed unsupervised learning method employed the
random forest algorithm, which combines various unique classifiers through bootstrapping
to build decision trees for signal analysis and decision making. The authors claimed that
the random forest algorithm outperformed artificial neural networks (ANNs) and support
vector machines (SVMs) for most gestures, although misclassifications still occurred for
similar letters of the alphabet. The approach achieved an average accuracy of 95.48%. In
another study by Yongjie Z et al. [23], an approach was proposed for recognizing 18 isolated
Chinese sign language (CSL) signs. The approach was based on features extracted from both
accelerometer (ACC) and surface electromyography (sEMG) data. The linear discriminant
analysis (LDA) classifier was employed, and the dataset used consisted of 864 instances.
Data was collected from eight subjects using three sEMG sensors and two accelerometers
from the DELSYS TrignoTM Wireless EMG System. The authors obtained an average
accuracy ranging from 84.9% to 91.4% using this approach. They noted that placing the
sEMG and ACC sensors on the back of the hand improved the recognition rate by an
additional 6.5%, resulting in an accuracy of 91.4%. In contrast, an accuracy of 84.9% was
achieved when the sensors were only placed on the forearm and wrist.

In a study conducted by Ruiliang et al. [25], it was demonstrated that multi-channel
electromyography (EMG) and three-axis accelerometers can be utilized for hand gesture
recognition. The researchers developed an acquisition device specifically for this purpose
and collected data for 121 Chinese sign language (CSL) subwords. In their setup, four
sEMG sensors and a three-axis accelerometer were positioned around the left and right
forearms. One sEMG sensor and the three-axis accelerometers were placed near the back of
the wrist, while the other three sEMG sensors were placed near the elbow on the forearm.
The dataset used for experimental analysis consisted of 12 instances, with 12 samples
for each subword obtained from 5 subjects. The approach employed the random forest
algorithm as the primary classification framework. It consisted of a pre-classifier, a hand-
orientation classifier, two-handed classifiers, one-handed classifiers, and a multi-stream
hidden Markov model (HMM) classifier. To ensure improved accuracy of the random
forests, an enhanced decision tree was used. The approach achieved an accuracy of 98.25%.
The authors acknowledged two main limitations of their approach. Firstly, the construction
time of the random forest with all decision trees was found to be excessively long. Secondly,
the sensor placement could have potentially influenced the performance of the proposed
sign language recognition (SLR) system.

6. Discussion

It is true that many sign language recognition systems based on electromyography
(EMG) signals have shown promising feasibility due to significant advancements in their
design. These systems utilize EMG data alone or in combination with inertial measurement
unit (IMU) data to improve gesture recognition accuracy in sign language. However, the
use of sEMG signals also presents challenges, as they are susceptible to various factors that
can impact the reliability and performance of sign language recognition systems. One of the
highlighted challenges is the variability of sEMG data from person to person and even from
hour to hour, as it depends on factors such as the muscular state, including the levels of
strength and fatigue. This variability makes it important to consider individual differences
when designing and deploying these systems. The location of the sensors on the forearm
is another crucial factor to consider. The size of the forearm, particularly for approaches
that utilize devices like the Myo armband, can affect the positioning and effectiveness of
the sEMG sensors. Additionally, the physiological characteristics of muscles differ from
person to person, which further emphasizes the need for individualized placement of the
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sEMG sensors on the forearm muscles. Moreover, the use of multiple sensors has been
found to enhance the reliability of sign language recognition systems. By incorporating
data from different sensors, the system can capture a more comprehensive representation
of the user’s gestures, improving overall accuracy.

In Figure 11, we present an analysis illustrating the relationship between accuracy and
various parameters, including data size, number of classes, number of sEMG channels, and
number of subjects in the selected papers. Examining the number of subjects allowed us to
identify three papers with a larger participant pool: The studies published by the authors
of [31,40,81]. The achieved accuracy in these papers exceeds 97%, with the exception of the
study published by the authors of [31], where the accuracy has not been defined. Notably,
the study published by the authors of [81] achieved an accuracy of 97% in recognizing
26 gestures, performed by 30 subjects, utilizing a reasonably sized dataset. This finding is
noteworthy, given the known instability of sEMG signals from one individual to another.

To address the recognition challenges, several approaches discussed in these research
papers have employed machine learning techniques with various algorithms, segmentation
methods, and feature extraction techniques. These machine learning-based approaches
leverage the power of algorithms to learn from the sEMG data and improve the recognition
accuracy. Deep learning, in particular, has been employed in some approaches due to its
ability to effectively learn from sEMG data, reducing the heterogeneity of data discrep-
ancies between different types of sensors. This, in turn, leads to a better performance of
the sign language recognition systems. Based on the provided information, the survey
focused on various common sign language recognition approaches using surface elec-
tromyography (sEMG) signals. The classifiers used in these approaches include support
vector machines (SVMs), artificial neural networks (ANNs), convolutional neural networks
(CNNs), K-nearest neighbors (KNNs), hidden Markov model (HMMs), and long short-term
memory (LSTM). The survey highlighted that SVMs and ANNs are the most commonly
used classifiers for gesture recognition in sign language using EMG signals. SVM classifiers,
particularly the LibSVM variant, have been improved through incorporating the decision
tree, nearest neighbor, and naïve Bayes methods to enhance accuracy in certain studies.
However, it was mentioned that ANN and SVM classifiers may not always provide the
best precision. The article published by the authors of [21] claims that the random forest
algorithm outperforms the ANN and SVM classifiers in classifying most of the gestures.
Additionally, research conducted by the authors of [94] demonstrated that the KNN classi-
fier achieves better recognition results compared to the SVMs. However, the KNN classifier
is computationally intensive and complex. In the study published by the authors of [96],
the KNN classifier was found to offer more satisfactory precision than SVMs, although
SVMs provide higher accuracies. Regarding ANN models, various types have been utilized,
including the emotional artificial neural network (E-ANN), multilayer perceptron, and
backpropagation neural network. The research conducted by the authors of [41] reports the
highest accuracy of 100% using a multilayer perceptron neural network classifier with data
from the Myo armbands. CNNs have been identified as the third most popular classifier
for sign language gesture classification using EMG signals. Several studies combine CNNs
with LSTMs to improve accuracy, as seen in approaches published by the authors of [78]
and [80]. The highest accuracy achieved among these approaches was 99.6% [85], utilizing
both EMG and inertial measurement unit (IMU) data. Among the learning algorithms
mentioned, LSTMs and CNNs have shown promising results in sign language gesture
classification using sEMG data. However, LSTM is generally considered the best algorithm
due to its suitability for sequential data and ability to capture temporal dependencies.
LSTM networks can retain information from previous inputs over longer periods, allowing
them to better handle sequential dependencies in EMG signals, which is crucial for sign
language recognition. In summary, the survey highlights the prevalence of SVM and ANN
classifiers in sign language recognition using EMG signals. While some studies suggest
alternative classifiers, such as the random forest and KNN classifiers, LSTM stands out as
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the most effective algorithm for capturing sequential dependencies and improving gesture
recognition performance in EMG-based sign language recognition systems.
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Figure 11. Comparative analysis of accuracy in the selected papers relative to dataset size, number of
classes, number of sEMG channels, and number of subjects.

In conclusion, sign language recognition systems based on sEMG signals have made
significant progress thanks to advancements in their design. While challenges related to
variability in sEMG data and sensor placement exist, machine learning and deep learning
techniques have been employed to tackle these challenges and improve the accuracy and
reliability of these systems. The use of multiple sensors has also been found beneficial in
achieving better performance.

7. Conclusions

Our article represents a systematic review of the literature of studies on the recognition
of sign languages published in the last decade. A total of 88 papers related to sign language
recognition represent our dataset which were analyzed; they were collected from different
academic databases, namely Google Scholar, Scopus, Web of science, Springer Link, IEEE
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Xplore, and ACM Digital Library. This review demonstrates that sign language analysis
and recognition, which recognizes signs using EMG signals, is a very recent and emerging
area of research. Most of the studies reviewed use both sEMG and IMU data, while
a relatively limited number of studies only use sEMG data for sign language gesture
recognition. We distinguish in this article several approaches that differ by the method
of analysis, the method of learning, the classifier, the devices for acquiring signs, as well
as the dataset that includes the number of gestures and the number of subjects; all these
parameters influence the performance of the sign language recognition systems proposed
in the various studies examined. Thus, these approaches showed promising results. On
the other hand, it is difficult to make a reliable comparison of these approaches, as the
studies that used a reference database were very limited; however, most of the studies
used their own dataset, which were collected by themselves. In this context, it is preferable
to use calibrated databases in future work so that the comparison between the different
approaches is more concrete.

Author Contributions: Conceptualization, A.B.H.A., O.E.G. and M.J.; methodology, A.B.H.A., O.E.G.
and M.J.; validation, A.B.H.A., O.E.G. and M.J.; formal analysis, A.B.H.A., O.E.G. and M.J.; resources,
A.B.H.A.; data curation, A.B.H.A.; writing—original draft preparation, A.B.H.A.; writing—review
and editing, O.E.G. and M.J.; visualization, A.B.H.A. and O.E.G.; supervision, M.J.; project adminis-
tration, M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Used hardware.

Ref. Sensor Device EMG
Channel Freq. Hand

[14] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Right

[15] sEMG + accelerometer - 5 1000 Hz Right

[16] sEMG + 2 accelerometers - 8 1000 Hz Right/tow

[17] sEMG + 2 accelerometers +
2 gyroscopes - 8 1000 Hz Right

[18] sEMG + accelerometer + gyroscope Myo armband 8 200 Hz -

[19] sEMG
Custom device:

Conductor muscle electrical sensor,
Arduino UNO.

6 - -

[20] sEMG + accelerometer Delsys Trigno Lab Wireless System 4 1927 Hz Right

[21] sEMG Delsys Trigno 8 1926 Hz Right

[22] sEMG + accelerometer Custom device 4 1 kHz Tow

[23] sEMG and accelerometer DELSYS TrignoTM Wireless EMG
System 3 2000 Hz Right

[24] sEMG Myo armband 8 200 Hz -

[25] sEMG + accelerometer Custom device:
sEMG sensors, MMA7361 4 1000 Hz Tow
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Table A1. Cont.

Ref. Sensor Device EMG
Channel Freq. Hand

[26] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 100 Hz -

[27] sEMG +
2 accelerometers

Custom device:
NIPCI-6036 E,

National Instruments
8 1000 Hz Tow

[28] sEMG + accelerometer + gyroscope Myo armband 8 200 Hz Right

[29] sEMG + accelerometer + gyroscope Custom device 6 500 Hz Right

[30] sEMG + accelerometer + gyroscope Custom device 4 1 kHz Tow

[31] sEMG + accelerometer + gyroscope Myo armband 8 200 Hz Tow

[32] sEMG + accelerometer Custom device 8 1 kHz Tow

[33] sEMG Delsys Trigno Lab Wireless System 6 2 kHz -

[34] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Right

[35] sEMG +acceleration, gyroscope,
gravity sensors Smartwatch + Myo armband 8 200 Hz Dominant

[36] sEMG + accelerometer + gyroscope +
magnetometer

Custom device:
InvenSense MPU9150

ADS1299
4 1000 Hz Right

[37] sEMG + accelerometer + gyroscope +
magnetometer

Custom device:
InvenSense MPU9150, TI ADS1299 4 1000 Hz Right

[38] sEMG Myo armband 8 200 Hz Dominant

[39] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Right/tow

[40] sEMG Myo armband 8 200 Hz -

[41]

sEMG + accelerometer + gyroscope +
magnetometer

2 Myo armbands 8 each
armband

200 Hz Tow

sEMG + accelerometer + gyroscope

sEMG + accelerometer +
magnetometer

sEMG + accelerometer +
magnetometer

sEMG + accelerometer

sEMG + gyroscope + magnetometer

sEMG

[42] sEMG + accelerometer 2 Myo armbands 8 200 Hz Tow

[43] sEMG Myo armband 8 200 Hz Right

[44] sEMG + FMG Custom device:
ADS1299, Texas instrument 8 1000 Hz -

[45] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[46] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Tow

[47] sEMG + accelerometer + gyroscope Myo armband 8 200 Tow

[48] HD- sEMG Custom device 8 × 16 400 Hz Right
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Table A1. Cont.

Ref. Sensor Device EMG
Channel Freq. Hand

[49] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[50] sEMG + accelerometer + flex Custom device 2 - -

[51] sEMG Myo armband 8 200 Hz -

[52]
sEMG + accelerometer + gyroscope +
magnetometer + leap motion + VIVE

HMD
Myo armband 8 200 Hz -

[53] sEMG Bio Radio 150 CleveMed 8 960 Hz Right

[54] sEMG + accelerometer + gyroscope Myo armband 8 200 Hz Tow

[55] sEMG Delsys Trigno Lab Wireless System 6 2 kHz Tow

[56] sEMG BIOPAC-MP-45 4 1000 Hz Right

[57]
sEMG Delsys Trigno Wireless EMG 3 1111 Hz Dominant

Accelerometer + sEMG

[58] sEMG + accelerometer + gyroscope +
magnetometer - 3 1000 Hz Tow

[59] sEMG + accelerometer + gyroscope Delsys Trigno Lab Wireless System 3 1 kHz Tow

[60] sEMG Delsys Trigno Lab Wireless System 5 1 kHz -

[61] sEMG + accelerometer + gyroscope Delsys Trigno Lab Wireless System 2 1 kHz Dominant

[62] sEMG Delsys Trigno Lab Wireless System 3 1 kHz Dominant

[63] sEMG Custom device 1 1 kHz Right

[64] sEMG Delsys Trigno Lab Wireless System 3 1.1 kHz Right

[65] sEMG + accelerometer + gyroscope Delsys Trigno Lab Wireless System 3 900 kHz Tow

[66] sEMG Myo armband 8 200 Hz -

[67] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[68] sEMG + accelerometer + gyroscope Myo armband 8 200 Hz Right

[69] sEMG Myo armband 8 200 Hz -

[70] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[71] sEMG Custom device 4 - -

[72] sEMG Myo armband 8 100 Hz -

[73] sEMG + pressure Custom device 3 - -

[74] Leap motion + sEMG Myo armband 8 200 Hz Tow

[75] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[76] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[77] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Tow

[78] sEMG Myo armband 8 200 Hz Right

[79] sEMG Custom device 3 500 Hz Right



Sensors 2023, 23, 8343 30 of 43

Table A1. Cont.

Ref. Sensor Device EMG
Channel Freq. Hand

[80] sEMG Myo armband 8 200 Hz Right

[81] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Right

[82] sEMG Myo armband 8 200 Hz -

[83] sEMG Myo armband 8 200 Hz -

[84] sEMG Myo armband 8 200 Hz Dominant

[85] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Right

[86] sEMG sEMG armband 8 600 Hz Right

[87] sEMG BIOPAC 3 Dominant

[88] sEMG BIOPAC 3 - -

[89] sEMG Myo armband 8 200 Hz -

[90] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[91] sEMG + accelerometer + gyroscope +
force-sensing resistor Custom device 1 10 Hz Right

[92] sEMG Custom device 4 100 Hz Left

[93] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Dominant

[94] sEMG + accelerometer Custom device 1 - -

[95] EMG Myo armband 8 200 Hz Right

[96] sEMG + accelerometer + gyroscope Custom device 4 - Right

[97] sEMG + accelerometer BTS FREEMG 4 1000 Hz Right

[98] sEMG TMS porti 8 1000 Hz -

[99] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz Right

[100] sEMG + accelerometer + gyroscope +
magnetometer Myo armband 8 200 Hz -

[101] sEMG + accelerometer Bioplux8 5 1000 Hz Right



Sensors 2023, 23, 8343 31 of 43

Table A2. Data acquisition main parameters.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[14] Chinese SL Word 86 85,424 8

Armband placed on arm muscles:
Extensor carpi radialis longus

Flexor carpi ulnaris
Flexor carpi radialis

Brachioradialis
Extensor digitorum

Extensor digiti minimi

200 20 From 94.72% to
98.92%

[15] Chinese SL Word 72 ni 5

Extensor digiti minimi
Palmaris longus

Extensor carpi ulnaris
Extensor carpi radialis

Brachioradialis

1000 2 93.1%

[16] Chinese SL Subword 121 2420 8

Extensor digiti minimi
Palmaris

Extensor carpi ulnaris
Extensor carpi radialis

1000 1 95.78%

[17] Chinese SL Subword 150 3750 8

Extensor digiti minimi
Palmaris longus

Extensor carpi ulnaris
Extensor carpi radialis

1000 8 From 88.2% to
95.1%

[18] Chinese SL Word 48 4800 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 1 97.12%

[19] Chinese SL Alphabet 4 800 6

Pronator quadratus
Flexor digitorum superficialis

Flexor carpi ulnaris
Palmaris longus

Flexor carpi radialis
Brachioradialis
Pronator teres

- 4 86%
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Table A2. Cont.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[20] Chinese SL

Word 53 26,500

4

Extensor digitorum
Palmaris longus

Extensor carpi radialis longus
Flexor carpi ulnari

The hybrid sensor (EMG+IMU) is placed on the extensor digiti minimi.
Extensor pollicis longus
Extensor pollicis brevis

1927

5 96.01 ± 0.83%

Alphabet 23 8028 92.73% ± 1.47

[21] Chinese SL Alphabet 30 600 8

Extensor carpi radialis brevis
Extensor digitorum

Brachioradialis
Extensor carpi ulnaris

1926 4 95.48%

[22] Chinese SL Subword 120 14,200 4 - 1000 5 91.51%

[23] Chinese SL Word 18 864 3

Extensor carpi radialis longus
Extensor carpi ulnaris

Flexor carpi radialis longus
Extensor digitorum

Tendons of extensor digitorum/lumbricals

2000 8 From 84.9% to
91.4%

[24] Chinese SL Word 15 5250 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 10 88.7%

[25] Chinese SL Subword 121 1452 4

Extensor minimi digiti
Palmaris longus

Extensor carpi ulnaris
Extensor carpi radilis

1000 5 98.25%

[26] Chinese SL Word 35 4480 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 100 8 98.12%

[27] Chinese SL Word
Sentence

120
975 4

Extensor minimi digiti
Palmaris longus

Extensor carpi ulnaris
Extensor carpi radialis

1000 5
96.5%

200 86.7%

[28] Chinese SL Word 50 2780 8 Armband placed on arm muscles:
Same as [14] 200 10 89%
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Table A2. Cont.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[29] Chinese SL Word 5 5000 6

Extensor digitorum
Flexor carpi radialis longus

Extensor carpi radialis longus
Extensor carpi ulnaris

500 4 91.2%

[30] Chinese SL Word 150 30,000 4

Extensor digiti minimi
Palmaris longus

Extensor carpi ulnaris
Extensor carpi radialis

1000 8 90%

[31] Chinese SL Word 60 20,400 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 34 WER 19.7

[32] Chinese SL Subword 116 27,840 8

Extensor minimi digiti
Palmaris longus

Extensor carpi ulnaris
Extensor carpi radialis

1000 2 97.55%

[33] Chinese SL Hand
shape 13 780 6

Extensor carpi radialis longus
Extensor digitorum and flexor carpi ulnaris

Palmaris longus
Extensor pollicis longus
Abductor pollicis longus

Extensor digiti minimi

1927 10 78.15%

[34] Chinese SL Word 10 20,000 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 10 98.66%

[35] American
SL Sentence 250 10625 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 15 WER 0.29%

[36] American
SL Word 80 24,000 4

Extensor digitorum
Flexor carpi radialis longus

Extensor carpi radialis longus
Extensor carpi ulnaris

1000 4 85.24–96.16%

[37] American
SL Word 40 4000 4

Extensor digitorum
Flexor carpi radialis longus

Extensor carpi radialis longus
Extensor carpi ulnaris

1000 4 95.94%
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Table A2. Cont.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[38] American
SL Word 27

2080

8
Armband placed on arm muscles:

Same as the study published by the authors of [14] 200

1
From 60.85%

to 80%

10,400 10
From 34.00%

to 51.54%

[39] American
SL

Word 70
ni 8

Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 15 93.7%

Sentence 100

[40] American
SL

Word 8
1300 8

Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 50 99.31%

Alphabet 5

[41] American
SL Word 9 SCEPTRE

database 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 3 From 47.4% to

100%

[42] American
SL Word 50 10,000 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 10 33.66%

[43] American
SL Word 20 4000 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 20 97.9%

[44] American
SL Digit 10 250 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 1000 5 91.6 ± 3.5%

[45] American
SL Alphabet 24 240 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 1 80%

[46] American
SL Word 13 390 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 3 81.20%

[47] American
SL Word 13 26,000 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 3 93.79%

[48] American
SL

Hand
shape 10 120 8 × 16 Intrinsic muscles

Extrinsic muscles 400 4 78%

[49] American
SL Alphabet 26 936 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 8 95.36%

[50] American
SL Alphabet 26 130 2 Flexor carpi radialis

Extensor carpi radialis longus - 1 95%
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Table A2. Cont.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[51] American
SL Word 10 3000 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 - 95%

[52] American
SL Alphabet 25 33,600 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 7 100%

[53] American
SL Alphabet 26 2080 8 - 960 1 92%

[54] American
SL Word 20 - 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 10 97.72%

[55] American
SL Word 20 1800 6 - 2000 3 97%

[56] Indian SL Word 5 250 4
Flexor carpi radialis

Extensor carpi radialis longus
Reference electrode: Palm

1000 6 90%

[57] Indian SL Word 10 1200 3
Extensor carpi radialis longus

Extensor digitorum
Flexor carpi radialis

1111 6 87.5%

[58] Indian SL Digit/word 9 180 3 Where the maximum movement of the muscles of the forelimbs
is observed 1000 - 91.1%

[59] Indian SL Word 100 16,000 3 - 1000 10 97%

[60] Indian SL Hand
shape 15 1200 5 - 1111 - 100%

[61] Indian SL
Hand

shape +
word

12 2400 2 Flexor digitorum
Extensor carpi radialis 1111 10 88.25%

[62] Indian SL Digit 9 900 3
Flexor digitorum

Extensor carpi radialis
Brachioradialis

1111 5 90.10%

[63] Indian SL Hand
shape 4 120 1 Flexor carpi radialis 1000 - 97.50%
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Table A2. Cont.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[64] Indian SL
Hand

shape +
word

10 800 3
Flexor capri ulnaris

Extensor capri radialis
Brachioradialis

1100 4 92.37%

[65] Indian SL Word 100 20,000 3 - 900 10 90.73%

[66] Brazilian
SL Alphabet 20 2200 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 1 From 4% to 95%

[67] Brazilian
SL Alphabet 26 520 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 10 89.11%

[68] Brazilian
SL Alphabet 26 - 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 15 99.06%

[69] Brazilian
SL Alphabet 20 840 8 Extensor carpi ulnar

Flexor carpi radial 200 1 81.60%

[70]
General

hand
shapes

Hand
shapes 12 - 8 Brachial 200 - -

[71] General Digit/alphabet 36 - 4

Lumbric muscles
Hypothenar muscles

Thenar muscles
Flexor radials carpi

- - -

[72] General Hand
shape 6 3600 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 100 3 94%

[73] General Digit 10 500 3 - - - 86.80%

[74] Indonesian
SL

Word +
alphabet 10 200 8 Armband placed on arm muscles:

Same as [14] 200 1 98.63%

[75] Indonesian
SL Alphabet 26 260 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 1 93.08%

[76] Indonesian
SL

Word +
alphabet 52 5200 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 20 86.75%

[77] Indonesian
SL Alphabet 26 260 8 Armband placed on arm muscles:

Same as the study published by the authors of [14] 200 - 82.31%
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Table A2. Cont.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[78] Arabic SL Alphabet 28 33,600 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 3 98.49%

[79] Arabic SL Words 5 150 3 - 500 1 90.66%

[80] Arabic SL Alphabet 28 15,000 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 8 97.4%

[81] Italian SL Alphabet 26 780 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 30 97%

[82] Italian SL Alphabet 780 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 1 93.5%

[83] Italian SL Alphabet 26 780 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 1 -

[84] Korean SL Word 3 1200 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 1 94%

[85] Korean SL Word 30 ni 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 1 99.6%

[86] Korean SL Word 38 300 8
Armband placed on arm muscles:

Same as the study published by the authors of [14], with the
reference channel placed on the flexor carpi radialis

600 17 97.4%

[87] Pakistani
SL Alphabet 26 780 3 Flexor carpi radialis

Flexor digitorum superficialis 1 81%

[88] Pakistani
SL Sentence 11 550 3 - - 5 85.40%

[89] Turkish SL Number 11 1656 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 9 86.61%

[90] Turkish SL Hand
shape 36 - 8 - 200 10 78%

[91] Malaysian
SL Word 5 150 1 Extensor carpi ulnaris 10 3 91%

[92] Peru SL Alphabet 27 135 4 - 100 1 93.9%
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Table A2. Cont.

Ref. Target Type Classes Dataset Size Sensor Placement Frame Rate Subjects Accuracy

[93] Polish SL Word 18 21,420 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 14 91%

[94] German
SL Word 7 560 1 Flexor carpi radialis—nearby wrist - 8 96.31%

[95] French SL Alphabet 7 2480 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 4 90%

[96] Persian SL Word 20 2000 4

Extensor digitorum communis
Flexor carpi radialis longus

Extensor carpi radialis longus
Extensor carpi ulnaris

- 10 96.13%

[97] Colombian
SL Word 12 360 4

Extensor digitorum communis
Extensor carpi ulnaris

Flexor carpi ulnaris
Flexor carpi radialis

1000 3 96.66%

[98] Thai SL Alphabet 10 2000 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 1000 1 95%

[99] Sinhala SL Word 12 360 8 Armband placed on arm muscles:
Same as the study published by the authors of [14] 200 6 94.4%

[100] Irish SL Alphabet 26 1560 8

Armband placed on arm muscles:
Same as the study published by the authors of [14], with focus on
the extensor digitorum from the posterior forearm, and the flexor

carpi ulnaris from the anterior forearm

200 12 78%

[101] Greek SL Word 60 - 5

Flexor carpi ulnaris
Flexor digitorum superficialis

Flexor carpi radialis
Extensor digitorum communis

Extensor carpi ulnaris

1000 - 92%
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